
!

October 20, 2012

Javolution C++
They call him Ginger!

« It looks like Java, it tastes likes Java… but it is C++ »

What is the problem?

• More and more hybrid C++/Java projects
o Developer expertise required in both Java and C++

• C++ total cost is significantly higher
o But cost of migrating existing C++ components to Java is

prohibitive.

• Standardized and well established software
practices exist in the Java world
o C++ developers are on their own (multiple solutions to

address the same problems lead to additional complexity)

• Many Open-Source implementations of Software
Standards exist only in Java
o OSGi, GeoAPI, UnitsOfMeasure, etc.

Many causes of variability.

• Developers expertise varies considerably.

• Testing performed at the end (integration) due to
component inter-dependencies.

• Insufficient documentation.

• “Not Invented Here” Syndrome.

• Proprietary solutions not maintained which later
become legacy burden.

• It is very beneficial to follow well-established
standard specification.

“Doing the right thing is difficult, but doing it right is easier.”

Javo(So)lution.

• Uniformization of C++/Java development through the
use of a common framework (Javolution) based on
Java standard library specification.

• Facilitating the migration of Java OSS code to C++

• Promote the “Service Oriented Approach” by
providing an OSGi framework for both Java and C++

• Reduce documentation by having the same
specification/design for our Java and C++
components.

• Unification of code building for Java and C++ (maven
used for both).

Maven Build

• Apache Maven (maven native plugin) is used to produce
artifacts (dynamic libraries, static libraries, executable) and to
perform unit tests.

• Profiles and packaging classifiers are used to address
platform variability (windows, linux, etc.)

What is Javolution C++ ?

• A mirrored C++ library sharing the same
specifications, documentation and unit testing as its
Java pendant.

• A “behind-the-scenes” C++ infrastructure based on
smart pointers (real-time garbage collection through
reference counting).

• Integrated memory cache making small, short lived
objects (e.g. value types) very efficient.

• C++ packages/classes derived from standard Java
(e.g. javolution::lang, javolution::util)

• A C++ dynamic execution and testing framework

(OSGi & JUnit) identical to Java.

C++ Class Definition

The general pattern for class/interface is as follow:

#include "javolution/lang/Object.hpp"

namespace com { namespace bar {

 class Foo_API; // Value type (used to define the API)

 typedef Type::Handle<Foo_API> Foo; // Reference (same as Java)

}}

class com::bar::Foo_API : public virtual javolution::lang::Object_API {

private:

 Param param;

protected:

 Foo_API(Param const& param) { // const& for handles parameters.

 this->param = param;

 }

public:

 static Foo newInstance(Param const& param) { // Generalized use of

 return new Foo_API(param); // factory methods.

 }

 virtual void fooMethod () { ... };

}

C++ Parameterization – Better than Java!

• Unlike Java, C++ class parameterization is not
syntactic sugar but efficient use of C++ templates!

• All javolution::util collections are parameterized.

List<String> list = FastTable_API<String>::newInstance();

list->add(L"First");

list->add(Type::Null);

list->add(L"Second");

• Also used for Java-Like Enums

Synchronization

• Supported through a macro: synchronized(Object)
mimicking the Java synchronized keyword.

• Can be performed on instances of Javolution
collections and Class (for static synchronization).

synchronized (trackedServices) {// trackedServices instance of FastMap

 for (int i = 0; i < serviceReferences.length; i++) {

 Object service

 = actualCustomizer->addingService(serviceReferences[i]);

 trackedServices->put(serviceReferences[i], service);

 }

 trackingCount = 0;

}

Miscellaneous

• Limited reflection support through RTT

• Auto-boxing of primitive types (boolean, integer,
float, wide strings).

Integer32 i = 23;

Float64 f = 3.56;

Boolean b = true;

String s = L"xx";

• All variables are initialized to Type::Null
(NullPointerException if not set before use).

• Wide-String (literal) concatenation supported.
 throw RuntimeException_API::newInstance(

 L"Bundle " + symbolicName + L" not in a resolved state“);

• Dynamic length array Type::Array<type>
Type::Array<ServiceReference> serviceReferences

 = context->getServiceReferences(serviceName, Type::Null);

if (serviceReferences.length == 0) return;

Minor differences with Java

• No ‘finally’ keyword in C++ (but try…catch same

as Java).

• Static methods are called using the name of the
class with the suffix ‘_API’

• Generalized use of static factory methods, e.g.
MyClass_API::newInstance(…)

• Synchronization not supported on every object but
only on those whose class implements the
Object_API::getMutex() virtual method.

What next?

• Automatic translator (JavaCC based) of Java
source code to Javolution C++

• More Java library conversion (e.g. OpenSDK,

JScience, …)

• Help wanted in writing the translator tool 

